If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14k^2+5k-1=0
a = 14; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·14·(-1)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-9}{2*14}=\frac{-14}{28} =-1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+9}{2*14}=\frac{4}{28} =1/7 $
| 3.78-0.05x=1.26+0.13x | | 27+15m=297 | | y3-10=15 | | (2-u)(4u+9)=0 | | -30-2k=7k-3(2k+6) | | 5n-(2-8n)=5n-(2-8n) | | 72=500-10e/5 | | 3.78-0.05x=2.58 | | 15x^2+5x-1=0 | | 17=4w+8 | | 33n-135=162 | | 15k^2+5k-1=0 | | 53=2w+17 | | -38=-12x-17+7x | | 3.78+0.05x=2.58 | | 49t-4.9t2t=5 | | 4/x-11=33 | | (x)/(3)-6=5 | | 2/3h+10=6 | | x+0.05x=24,500 | | −5(3x−17)=2(x−13)−59 | | q/4+43=52 | | x+3=5*4 | | 1/2(x−4)=7+5x | | 0.2x+2.5x=8.5-1.5+2.5x | | 9(u+3)=72 | | 0.2x+2.5x=8.5-1.5+2.5 | | -4x+8=5x-73 | | 11+2x=2(−x+9)−31 | | 9v-25=29 | | 2x+5x+3x=800 | | -197.9x+6931.2=2775.3 |